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A naive look on the Hohenberg–Kohn theorem
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A generalised Hohenberg–Kohn theorem is described in terms of the sign of the second-
order energy variation. Independently, it is also corroborated within the perturbation theoret-
ical framework. An alternative formulation of the Hohenberg–Kohn theorem, based on the
relationships involving the matrix representations of density functions and the Hamiltonian
operator variations, is shown to extend the validity of the theorem to the excited states of
the Hamiltonian operators possessing non-degenerate spectra. Finally, a connection with
Brillouin’s theorem when energy variation becomes stationary is also outlined.

1. Introduction

Recently, Mezey [11] has arrived at the Hohenberg–Kohn theorem (HKT) [8],
using an information theoretical approach and has also derived a new theorem on
density functions – the holographic electron density theorem. This work [11] has
motivated us to attempt at the generalisation of the HKT and examine its consequences.

2. Generalised Hohenberg–Kohn theorem

Consider a quantum system, with an attached Hamiltonian H0, with a non-
degenerate ground state characterised by the energy–wavefunction pair {E0, Ψ0},
and another system with known Hamiltonian H , with a non-degenerate ground state
described by the pair {E, Ψ}. Assuming that both wavefunctions are normalised,
then the following relationships will hold: E0 = 〈Φ0|H0|Ψ0〉 and E = 〈Ψ|H|Ψ〉.
Also, approximate energies for both ground states can be defined, by exchang-
ing the positions of both wavefunctions, respectively, as Ea;0 = 〈Ψ|H0|Ψ〉 and
Ea = 〈Ψ0|H|Ψ0〉. In general, and independently of the system description, the in-
equalities ∆0 = E0 −Ea;0 6 0 and ∆ = E −Ea 6 0 will be valid.

Formally, from both wavefunctions, arbitrary order density functions can be build
up [3,4,9,10]. Here, the process of constructing density functions of arbitrary order
will be symbolised, for both the ground states considered above, by the projectors
ρ0 = |Ψ0〉〈Ψ0| and ρ = |Ψ〉〈Ψ|, respectively, Owing to this last convention, another
set of energy expressions can be used, namely, E0 = 〈H0|ρ0〉 and E = 〈H|ρ〉. This
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can be extended to approximate energy expressions as well, that is, Ea;0 = 〈H0|ρ〉
and Ea = 〈H|ρ0〉. Such an expectation value formalism was previously used to estab-
lish the theoretical background of the so-called structure–property or structure–activity
relationships [1,5,6]. A detailed mathematical analysis will be published elsewhere.

The negative energy difference, previously defined for the first system, can be
formally rewritten now as follows: ∆0 = 〈H0|ρ0〉−〈H0|ρ〉 = 〈H0|ρ0−ρ〉 = 〈H0|∆ρ〉,
and a similar sequence can be written for the second system: ∆ = 〈H|ρ〉 − 〈H|ρ0〉 =
−〈H|ρ0 − ρ〉 = −〈H|∆ρ〉.

Since both energy differences are non-positive definite, the following inequality
holds rigorously: ∆0 + ∆ 6 0. This will give rise to the following sequence of
differences: ∆0 + ∆ = 〈H0|∆ρ〉 − 〈H|∆ρ〉 = 〈H0 −H|∆ρ〉 = 〈∆H|∆ρ〉 6 0.

The last inequality above shows that the action of the Hamiltonian increment upon
the density difference will be, in any case, a non-positive definite quantity, which can be
symbolised by the expression 〈∆H|∆ρ〉 6 0. Four cases can be considered, which arise
out of the respective increments being null or not. But only the diagonal situations, the
ones with both increments simultaneously null or not null, will be relevant. Precisely,
the situation ∆H 6= 0 and ∆ρ = 0 produces the reductio ad absurdum, and was
used [8] to deduce the HKT, as the argument to accept the functional interdependence of
density and potential. The similar and equally non-realistic increment values, ∆H = 0
and ∆ρ 6= 0, can also be discarded. The couple of remaining possibilities provide
the trivial equality 〈∆H|∆ρ〉 = 0 when both increments are null; and, finally, when
∆H 6= 0 and ∆ρ 6= 0, the result 〈∆H|∆ρ〉 < 0 will hold. Alternatively, under special
conditions, this final case could also produce 〈∆H|∆ρ〉 = 0. This can be understood
by considering 〈∆H|∆ρ〉 as a formal scalar product within the space containing both
operator increments. Then, even if both the implied operator differences are non-null,
the condition that ∆H⊥∆ρ would imply a null product.

3. Second-order energy variation and perturbation

So far, and according to the last remarks, the resultant inequality, 〈∆H|∆ρ〉 6 0,
can be considered a generalised HKT (GHKT). But, continuing the analysis of such
an inequality, suppose that the increments transform into variations, then 〈δH|δρ〉 6 0
must hold. This last variational inequality suggests that on performing first-order
variations over both the Hamiltonian and the density function, the resulting second-
order energy variation part will always be negative or null.

It is easy to see that the variational form of the GHKT corresponds to the fact
that the second-order ground state energy variation will be non-positive definite. The
argument is almost trivial. According to the previous description, the energy can be
formally written as E = 〈H|ρ〉. Suppose a first-order variation is done on both the
Hamiltonian and the density function, that is, H → H + δH and ρ → ρ + δρ, then
the ground state energy variation could be written, up to second order, in the simple
form δE = 〈δH|ρ〉 + 〈H|δρ〉 + 〈δH|δρ〉. The GHKT developed here states that the
third term, constituting a second-order variation, is negative or null.
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The result obtained above using simple bra–ket algebra will be now deduced
following the well-known Rayleigh–Schrödinger perturbation theory (RS PT). It can
be shown in general that second-order RS PT corrections to a non-degenerate ground
state energy are non-positive definite. It will be instructive to give schematic arguments
to prove this. Take the initial Hamiltonians, and suppose the classical first-order
perturbation into the Hamiltonian relates both operators: H = H0 + λH1, where λ is
the perturbation parameter. Consider also that, in fact, the perturbation operator can
be associated with the previously used Hamiltonian variation, that is, H1 ≡ δH .

Then, textbook procedures, see for example [7,12], can easily show that second-
order corrections to the non-degenerate ground state energies can be given, following
the well-known expression

E2;0 =
∑
∀k>0

(E0;0 −E0;k)−1
∣∣〈k; 0|δH|0; 0〉

∣∣2,

where En;k stands for the nth-order energy correction for the kth state, that is, E0;0 is
the unperturbed ground state energy; while E0;k (∀k > 0) stand for the unperturbed
excited states energies. The same indices have been used to indicate the wavefunctions.
The symbols |n; k〉 represent the nth corrections to the kth state, and n = 0 will give
rise to the orthonormalised unperturbed wavefunction set.

Observing the above expression for the second-order correction to ground state
energy, E2;0, one can see that the sign of the expression will only depend on the sign
of the energy differences between the ground state and the whole set of excited state
energies: ∆0k = E0;0−E0;k; it is easy to see that ∆0k < 0 (∀k > 0). As in the GHKT,
it is obtained through RS PT reasoning that necessarily E2;0 6 0. The equality will
be fulfilled when δH = 0. Note that in this argumentation the perturbation operator
δH = H −H0 has the sign changed with respect to the previously used Hamiltonian
increment, but as the Hamiltonian perturbation appears within a squared module, this
feature is irrelevant here.

4. First-order density variation: A reformulation of HKT

Using the intermediate results, leading to the second-order correction to the en-
ergy, the first-order correction to the ground state density can be easily deduced. From
the well-known expression of the first-order correction to the ground state wavefunc-
tion, expressed using the same conventions as before, the following equality is ob-
tained:

|1; 0〉 =
∑
∀k>0

(∆0k)−1P0;kδH|0; 0〉,

where the projector over the kth excited state is symbolised by P0;k = |0; k〉〈k; 0|.
Besides, the variation of the unperturbed ground state wavefunction can be computed
as the corresponding first-order correction: δ|0; 0〉 ≡ |1; 0〉.
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Thus, it is easy to deduce that first-order variation into the density function, δρ0,
can be expressed as

δρ0 =
∑
∀k>0

(∆0k)−1(P0;kδHP0;0 + P0;0δHP0;k),

where the symbol P0;0 = |0; 0〉〈0; 0| has been used as the projector over the ground
state wavefunction.

Projecting δρ0 over an excited state |0; r〉 on the left and over the ground state on
the right produces P0;rδρ0P0;0 = (∆0r)−1P0;rδHP0;0. Rearranging terms, owing to the
projector expressions, the following relationship, relating the variation of density and
Hamiltonian, is found: 〈r; 0|δρ0|0; 0〉|0; r〉〈0; 0| = (∆0r)−1〈r; 0|δH|0; 0〉|0; r〉〈0; 0|.

A similar complex conjugate expression holds when reversing the projector sides
of the first-order density variation. It can be deduced, then, that there are two equalities
relating both operator representations, namely, 〈r; 0|δρ0|0; 0〉 = (∆0r)−1〈r; 0|δH|0; 0〉,
and its complex conjugate. This last result can be interpreted in the sense that the matrix
representation components of the ground state density and Hamiltonian operator first-
order variations differ only in a scalar negative constant. Thus, Hamiltonian variation
representations can be substituted by ground state density variation representations,
and vice versa. This constitutes another formulation of the HKT.

Mutatis mutandis, δρp, the density variation for some pth excited state |0; p〉
can be expressed using perturbation theory in the same way as in the ground state
discussion above. Provided that the unperturbed Hamiltonian is characterised by a
non-degenerate spectrum, the difference will consist in that the ground state function
must be replaced by the corresponding excited state one: |0; 0〉 → |0; p〉, and state
energy differences be changed accordingly: ∆0k → ∆pk.

The pth excited state HKT alternative formulation, after projection of the δρp
expression on the left by P0;r and on the right by P0;p, will correspond to the equalities
〈r; 0|δρp|0; p〉 = (∆pr)−1〈r; 0|δH|0; p〉, accompanied by the complex conjugate, which
will be obtained when changing the projectors’ sides. Comparison with ground state
results indicates that the sign of the difference set {∆pr} cannot remain uniquely
negative, when excited states are considered. Such relationships will extend the validity
of the HKT to the excited states as well.

5. Final remarks

An equivalent situation, affecting the ground state, can be obtained if it is taken
into account that as the RS PT result, E2;0 6 0, is independent of the sign of δH , then
GHKT, 〈δH|δρ0〉 6 0, implies sign(δρ0) = − sign(δH), corroborating the intercon-
nection between these variation representations found previously using RS PT. This
relationship is made obvious when analysing the structure of δρ0 given above.

Also, using again the RS PT expression for δρ0, and realising that the pairs
{E(0; k), |0; k〉} (∀k) are orthonormalised eigenstates of the unperturbed Hamiltonian,
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it is easy to prove that 〈H0|δρ0〉 = 0. Thus, the ground state energy variation can
be written with a unique first-order term: δE0 = 〈δH|ρ0〉+ 〈δH|δρ0〉 ≡ E1;0 +E2;0.
Moreover, at the stationary state, δE0 = 0, and thus 〈δH|ρ0〉 = −〈δH|δρ0〉. This
is the same as saying that when ground state energy optimum is reached, 〈δH|ρ0〉 =
〈δH〉 > 0. The expectation value of the Hamiltonian variation at the ground stationary
state neighbourhood will be non-negative definite. This result can be connected with
Brillouin’s theorem [2].

6. Conclusions

Standard quantum chemical arguments have been used to generalise and reformu-
late the Hohenberg–Kohn theorem with possible extension of the theorem to include
the excited states. A connection with Brillouin’s theorem is also discussed.
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[3] R. Carbó and E. Besalú, J. Math. Chem. 18 (1994) 117–126.
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